Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Med Imaging ; PP2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607705

RESUMEN

With the widespread interest and uptake of super-resolution ultrasound (SRUS) through localization and tracking of microbubbles, also known as ultrasound localization microscopy (ULM), many localization and tracking algorithms have been developed. ULM can image many centimeters into tissue in-vivo and track microvascular flow non-invasively with sub-diffraction resolution. In a significant community effort, we organized a challenge, Ultrasound Localization and TRacking Algorithms for Super-Resolution (ULTRA-SR). The aims of this paper are threefold: to describe the challenge organization, data generation, and winning algorithms; to present the metrics and methods for evaluating challenge entrants; and to report results and findings of the evaluation. Realistic ultrasound datasets containing microvascular flow for different clinical ultrasound frequencies were simulated, using vascular flow physics, acoustic field simulation and nonlinear bubble dynamics simulation. Based on these datasets, 38 submissions from 24 research groups were evaluated against ground truth using an evaluation framework with six metrics, three for localization and three for tracking. In-vivo mouse brain and human lymph node data were also provided, and performance assessed by an expert panel. Winning algorithms are described and discussed. The publicly available data with ground truth and the defined metrics for both localization and tracking present a valuable resource for researchers to benchmark algorithms and software, identify optimized methods/software for their data, and provide insight into the current limits of the field. In conclusion, Ultra-SR challenge has provided benchmarking data and tools as well as direct comparison and insights for a number of the state-of-the art localization and tracking algorithms.

2.
Appl Environ Microbiol ; 90(2): e0204823, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38289131

RESUMEN

Bacterial and eukaryotic HtrAs can act as an extracytoplasmic protein quality control (PQC) system to help cells survive in stress conditions, but the functions of archaeal HtrAs remain unknown. Particularly, haloarchaea route most secretory proteins to the Tat pathway, enabling them to fold properly in well-controlled cytoplasm with cytosolic PQC systems before secretion. It is unclear whether HtrAs are required for haloarchaeal survival and stress response. The haloarchaeon Natrinema gari J7-2 encodes three Tat signal peptide-bearing HtrAs (NgHtrA, NgHtrB, and NgHtrC), and the signal peptides of NgHtrA and NgHtrC contain a lipobox. Here, the in vitro analysis reveals that the three HtrAs show different profiles of temperature-, salinity-, and metal ion-dependent proteolytic activities and could exhibit chaperone-like activities to prevent the aggregation of reduced lysozyme when their proteolytic activities are inhibited at low temperatures or the active site is disrupted. The gene deletion and complementation assays reveal that NgHtrA and NgHtrC are essential for the survival of strain J7-2 at elevated temperature and/or high salinity and contribute to the resistance of this haloarchaeon to zinc and inhibitory substances generated from tryptone. Mutational analysis shows that the lipobox mediates membrane anchoring of NgHtrA or NgHtrC, and both the membrane-anchored and free extracellular forms of the two enzymes are involved in the stress resistance of strain J7-2, depending on the stress conditions. Deletion of the gene encoding NgHtrB in strain J7-2 causes no obvious growth defect, but NgHtrB can functionally substitute for NgHtrA or NgHtrC under some conditions.IMPORTANCEHtrA-mediated protein quality control plays an important role in the removal of aberrant proteins in the extracytoplasmic space of living cells, and the action mechanisms of HtrAs have been extensively studied in bacteria and eukaryotes; however, information about the function of archaeal HtrAs is scarce. Our results demonstrate that three HtrAs of the haloarchaeon Natrinema gari J7-2 possess both proteolytic and chaperone-like activities, confirming that the bifunctional nature of HtrAs is conserved across all three domains of life. Moreover, we found that NgHtrA and NgHtrC are essential for the survival of strain J7-2 under stress conditions, while NgHtrB can serve as a substitute for the other two HtrAs under certain circumstances. This study provides the first biochemical and genetic evidence of the importance of HtrAs for the survival of haloarchaea in response to stresses.


Asunto(s)
Halobacteriaceae , Calor , Salinidad , Halobacteriaceae/genética , Señales de Clasificación de Proteína
3.
IEEE J Biomed Health Inform ; 28(2): 988-999, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38064334

RESUMEN

The presence of tertiary lymphoid structures (TLSs) on pancreatic pathological images is an important prognostic indicator of pancreatic tumors. Therefore, TLSs detection on pancreatic pathological images plays a crucial role in diagnosis and treatment for patients with pancreatic tumors. However, fully supervised detection algorithms based on deep learning usually require a large number of manual annotations, which is time-consuming and labor-intensive. In this paper, we aim to detect the TLSs in a manner of few-shot learning by proposing a weakly supervised segmentation network. We firstly obtain the lymphocyte density maps by combining a pretrained model for nuclei segmentation and a domain adversarial network for lymphocyte nuclei recognition. Then, we establish a cross-scale attention guidance mechanism by jointly learning the coarse-scale features from the original histopathology images and fine-scale features from our designed lymphocyte density attention. A noise-sensitive constraint is introduced by an embedding signed distance function loss in the training procedure to reduce tiny prediction errors. Experimental results on two collected datasets demonstrate that our proposed method significantly outperforms the state-of-the-art segmentation-based algorithms in terms of TLSs detection accuracy. Additionally, we apply our method to study the congruent relationship between the density of TLSs and peripancreatic vascular invasion and obtain some clinically statistical results.


Asunto(s)
Neoplasias Pancreáticas , Estructuras Linfoides Terciarias , Humanos , Neoplasias Pancreáticas/diagnóstico por imagen , Páncreas , Algoritmos , Núcleo Celular , Procesamiento de Imagen Asistido por Computador
4.
Invest Radiol ; 59(5): 379-390, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37843819

RESUMEN

OBJECTIVE: The aim of this study is to demonstrate 3-dimensional (3D) acoustic wave sparsely activated localization microscopy (AWSALM) of microvascular flow in vivo using phase change contrast agents (PCCAs). MATERIALS AND METHODS: Three-dimensional AWSALM using acoustically activable PCCAs was evaluated on a crossed tube microflow phantom, the kidney of New Zealand White rabbits, and the brain of C57BL/6J mice through intact skull. A mixture of C 3 F 8 and C 4 F 10 low-boiling-point fluorocarbon gas was used to generate PCCAs with an appropriate activation pressure. A multiplexed 8-MHz matrix array connected to a 256-channel ultrasound research platform was used for transmitting activation and imaging ultrasound pulses and recording echoes. The in vitro and in vivo echo data were subsequently beamformed and processed using a set of customized algorithms for generating 3D super-resolution ultrasound images through localizing and tracking activated contrast agents. RESULTS: With 3D AWSALM, the acoustic activation of PCCAs can be controlled both spatially and temporally, enabling contrast on demand and capable of revealing 3D microvascular connectivity. The spatial resolution of the 3D AWSALM images measured using Fourier shell correlation is 64 µm, presenting a 9-time improvement compared with the point spread function and 1.5 times compared with half the wavelength. Compared with the microbubble-based approach, more signals were localized in the microvasculature at similar concentrations while retaining sparsity and longer tracks in larger vessels. Transcranial imaging was demonstrated as a proof of principle of PCCA activation in the mouse brain with 3D AWSALM. CONCLUSIONS: Three-dimensional AWSALM generates volumetric ultrasound super-resolution microvascular images in vivo with spatiotemporal selectivity and enhanced microvascular penetration.


Asunto(s)
Medios de Contraste , Microscopía , Ratones , Animales , Conejos , Ratones Endogámicos C57BL , Sonido , Acústica , Ultrasonografía/métodos , Microburbujas
5.
Artículo en Inglés | MEDLINE | ID: mdl-38109244

RESUMEN

Super-resolution ultrasound (SRUS) through localizing spatially isolated microbubbles (MBs) has been demonstrated to overcome the wave diffraction limit and reveal the microvascular structure and flow information at the microscopic scale. However, 3-D SRUS imaging remains a challenge due to the fabrication and computational complexity of 2-D matrix array probes. Inspired by X-ray radiography which can present information within a volume in a single projection image with much simpler hardware than X-ray computerized tomography (CT), this study investigates the feasibility of broad elevation projection super-resolution (BEP-SR) ultrasound using a 1-D unfocused linear array. Both simulation and in vitro experiments were conducted on 3-D microvessel phantoms. In vivo demonstration was done on the Rabbit kidney. Data from a 1-D linear array with and without an elevational focus were synthesized by summing up row signals acquired from a 2-D matrix array with and without delays. A full 3-D reconstruction was also generated as the reference, using the same data of the 2-D matrix array but without summing row signals. Results show that using an unfocused 1-D array probe, BEP-SR can capture significantly more information within a volume in both vascular structure and flow velocity than the conventional 1-D elevational-focused probe. Compared with the 2-D projection image of the full 3-D SRUS results using the 2-D array probe with the same aperture size, the 2-D projection SRUS image of BEP-SR has similar volume coverage, using 32 folds fewer independent elements. This study demonstrates BEP-SR's ability of high-resolution imaging of microvascular structures and flow velocity within a 3-D volume at significantly reduced costs. The proposed BEP method could significantly benefit the clinical translation of the SRUS imaging technique by making it more affordable and repeatable.


Asunto(s)
Microvasos , Tomografía Computarizada por Rayos X , Animales , Conejos , Ultrasonografía/métodos , Fantasmas de Imagen , Microvasos/diagnóstico por imagen , Microburbujas
6.
Nat Sci Sleep ; 15: 861-871, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928370

RESUMEN

Objective: To explore the potential category characteristics of sleep quality in conscious adult patients in the intensive care unit (ICU) and to analyze the differences in characteristics of different categories of conscious adult patients in the ICU. Methods: From 5/4/2023 to 30/6/2023, we selected ICU patients of a Class iii Grade A hospital in Wuhan as subjects by simple random sampling. The general information questionnaire, Acute Physiology and Chronic Health Evaluation II, Numerical Rating Scale (NRS)/Critical Care Pain Observation Tool (CPOT) and Richards-Campbell Sleep Questionnaire (RCSQ) were used for investigation. To analyze the latent profile of sleep quality characteristics of adult ICU awake patients and to identify the influencing factors of the latent profile through univariate analysis and logistic regression analysis. Results: A total of 298 awake ICU patients were investigated. There were three potential profiles of sleep quality characteristics, namely "low sleep quality" type (16.31%), "medium sleep quality" type (52.11%), and "high sleep quality" type (31.57%). Logistic regression analysis showed that age (36-60), disease type admitted to ICU, oxygen administration method, CPOT or NRS score, postoperative or not, use of analgesic drugs or not, and use of sleep-promoting drugs or not were the factors affecting the sleep quality of adult ICU awake patients (P < 0.05). Conclusion: The sleep quality of adult ICU awake patients has obvious classification characteristics. Health professionals can carry out individualized interventions according to the influencing factors of different potential profiles to improve the sleep quality of adult ICU awake patients.

7.
ISME J ; 17(10): 1719-1732, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37524909

RESUMEN

Bacterial pathogens and viruses are the leading causes of global waterborne diseases. Here, we discovered an interesting natural paradigm of water "self-purification" through virus-pathogen interactions over a 1432 km continuum along the Middle Route of the South-to-North Water Diversion Canal (MR-SNWDC) in China, the largest water transfer project in the world. Due to the extremely low total phosphorus (TP) content (ND-0.02 mg/L) in the MR-SNWDC, the whole canal has experienced long-lasting phosphorus (P) limitation since its operation in 2015. Based on 4443 metagenome-assembled genomes (MAGs) and 40,261 nonredundant viral operational taxonomic units (vOTUs) derived from our recent monitoring campaign, we found that residential viruses experiencing extreme P constraints had to adopt special adaptive strategies by harboring smaller genomes to minimize nucleotide replication, DNA repair, and posttranslational modification costs. With the decreasing P supply downstream, bacterial pathogens showed repressed environmental fitness and growth potential, and a weakened capacity to maintain P acquisition, membrane formation, and ribonucleotide biosynthesis. Consequently, the unique viral predation effects under P limitation, characterized by enhanced viral lytic infections and an increased abundance of ribonucleotide reductase (RNR) genes linked to viral nuclear DNA replication cycles, led to unexpectedly lower health risks from waterborne bacterial pathogens in the downstream water-receiving areas. These findings highlighted the great potential of water self-purification associated with virus-pathogen dynamics for water-quality improvement and sustainable water resource management.


Asunto(s)
Virosis , Virus , Humanos , Calidad del Agua , Ambiente , Virus/genética , Bacterias/genética , Fósforo/análisis , China
8.
Glob Chang Biol ; 29(17): 4750-4757, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37381593

RESUMEN

Climate change leads to increasing temperature and more extreme hot and drought events. Ecosystem capability to cope with climate warming depends on vegetation's adjusting pace with temperature change. How environmental stresses impair such a vegetation pace has not been carefully investigated. Here we show that dryness substantially dampens vegetation pace in warm regions to adjust the optimal temperature of gross primary production (GPP) ( T opt GPP ) in response to change in temperature over space and time. T opt GPP spatially converges to an increase of 1.01°C (95% CI: 0.97, 1.05) per 1°C increase in the yearly maximum temperature (Tmax ) across humid or cold sites worldwide (37o S-79o N) but only 0.59°C (95% CI: 0.46, 0.74) per 1°C increase in Tmax across dry and warm sites. T opt GPP temporally changes by 0.81°C (95% CI: 0.75, 0.87) per 1°C interannual variation in Tmax at humid or cold sites and 0.42°C (95% CI: 0.17, 0.66) at dry and warm sites. Regardless of the water limitation, the maximum GPP (GPPmax ) similarly increases by 0.23 g C m-2 day-1 per 1°C increase in T opt GPP in either humid or dry areas. Our results indicate that the future climate warming likely stimulates vegetation productivity more substantially in humid than water-limited regions.


Asunto(s)
Cambio Climático , Plantas , Estrés Fisiológico , Temperatura , Sequías , Ecosistema
9.
Microbiol Spectr ; 11(4): e0028823, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37347159

RESUMEN

The evolutionary relationship between arginine and lysine biosynthetic pathways has been well established in bacteria and hyperthermophilic archaea but remains largely unknown in haloarchaea. Here, the endogenous CRISPR-Cas system was harnessed to edit arginine and lysine biosynthesis-related genes in the haloarchaeon Natrinema gari J7-2. The ΔargW, ΔargX, ΔargB, and ΔargD mutant strains display an arginine auxotrophic phenotype, while the ΔdapB mutant shows a lysine auxotrophic phenotype, suggesting that strain J7-2 utilizes the ArgW-mediated pathway and the diaminopimelate (DAP) pathway to synthesize arginine and lysine, respectively. Unlike the ArgD in Escherichia coli acting as a bifunctional aminotransferase in both the arginine biosynthesis pathway and the DAP pathway, the ArgD in strain J7-2 participates only in arginine biosynthesis. Meanwhile, in strain J7-2, the function of argB cannot be compensated for by its evolutionary counterpart ask in the DAP pathway. Moreover, strain J7-2 cannot utilize α-aminoadipate (AAA) to synthesize lysine via the ArgW-mediated pathway, in contrast to hyperthermophilic archaea that employ a bifunctional LysW-mediated pathway to synthesize arginine (or ornithine) and lysine from glutamate and AAA, respectively. Additionally, the replacement of a 5-amino-acid signature motif responsible for substrate specificity of strain J7-2 ArgX with that of its hyperthermophilic archaeal homologs cannot endow the ΔdapB mutant with the ability to biosynthesize lysine from AAA. The in vitro analysis shows that strain J7-2 ArgX acts on glutamate rather than AAA. These results suggest that the arginine and lysine biosynthetic pathways of strain J7-2 are highly specialized during evolution. IMPORTANCE Due to their roles in amino acid metabolism and close evolutionary relationship, arginine and lysine biosynthetic pathways represent interesting models for probing functional specialization of metabolic routes. The current knowledge with respect to arginine and lysine biosynthesis is limited for haloarchaea compared to that for bacteria and hyperthermophilic archaea. Our results demonstrate that the haloarchaeon Natrinema gari J7-2 employs the ArgW-mediated pathway and the DAP pathway for arginine and lysine biosynthesis, respectively, and the two pathways are functionally independent of each other; meanwhile, ArgX is a key determinant of substrate specificity of the ArgW-mediated pathway in strain J7-2. This study provides new clues about haloarchaeal amino acid metabolism and confirms the convenience and efficiency of endogenous CRISPR-Cas system-based genome editing in haloarchaea.


Asunto(s)
Halobacteriaceae , Lisina , Lisina/metabolismo , Arginina/metabolismo , Vías Biosintéticas/genética , Sistemas CRISPR-Cas , Edición Génica , Aminoácidos/metabolismo , Halobacteriaceae/genética , Halobacteriaceae/metabolismo , Bacterias/genética , Glutamatos/genética , Glutamatos/metabolismo
10.
IEEE Trans Biomed Eng ; 70(9): 2752-2761, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37015124

RESUMEN

OBJECTIVE: Super-resolution ultrasound (SRUS) imaging through localising and tracking sparse microbubbles has been shown to reveal microvascular structure and flow beyond the wave diffraction limit. Most SRUS studies use standard delay and sum (DAS) beamforming, where high side lobes and broad main lobes make isolation and localisation of densely distributed bubbles challenging, particularly in 3D due to the typically small aperture of matrix array probes. METHOD: This study aimed to improve 3D SRUS by implementing a new fast 3D coherence beamformer based on channel signal variance. Two additional fast coherence beamformers, that have been implemented in 2D were implemented in 3D for the first time as comparison: a nonlinear beamformer with p-th root compression and a coherence factor beamformer. The 3D coherence beamformers, together with DAS, were compared in computer simulation, on a microflow phantom and in vivo. RESULTS: Simulation results demonstrated that all three adaptive weight-based beamformers can narrow the main lobe, suppress the side lobes, while maintaining the weaker scatter signals. Improved 3D SRUS images of microflow phantom and a rabbit kidney within a 3-second acquisition were obtained using the adaptive weight-based beamformers, when compared with DAS. CONCLUSION: The adaptive weight-based 3D beamformers can improve the SRUS and the proposed variance-based beamformer performs best in simulations and experiments. SIGNIFICANCE: Fast 3D SRUS would significantly enhance the potential utility of this emerging imaging modality in a broad range of biomedical applications.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Procesamiento de Señales Asistido por Computador , Conejos , Animales , Procesamiento de Imagen Asistido por Computador/métodos , Simulación por Computador , Algoritmos , Imagenología Tridimensional , Ultrasonografía/métodos , Fantasmas de Imagen
11.
J Environ Manage ; 330: 117178, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36621315

RESUMEN

Soil nitrification driven by ammonia-oxidizing microorganisms is the most important source of nitrous oxide (N2O) and nitric oxide (NO). Biochar amendment has been proposed as the most promising measure for combating climate warming; both have the potential to regulate the soil nitrification process. However, the comprehensive impacts of different aged biochars and warming combinations on soil nitrification-related N2O and NO production are not well understood. Here, 1-octyne and acetylene were used to investigate the relative contributions of ammonia-oxidizing bacteria (AOB) and archaea (AOA) to potential nitrification-mediated N2O and NO production from the fertilized vegetable soil with different aged biochar amendments and soil temperatures in microcosm incubations. Results demonstrated that AOB dominated nitrification-related N2O and NO production across biochar additions and climate warming. Biochar amendment did not significantly influence the relative contribution of AOB and AOA to N2O and NO production. Field-aged biochar markedly reduced N2O and NO production via inhibiting AOB-amoA gene abundance and AOB-dependent N2O yield while fresh- and lab-aged biochar produced negligible effects on AOB-dependent N2O yield. Climate warming significantly increased N2O production and AOB-dependent N2O yield but less so on NO production. Notably, the relative contribution of AOB to N2O production was enhanced by climate warming, whereas AOB-derived NO showed the opposite tendency. Overall, the results revealed that field-aged biochar contributed to mitigating warming-induced increases in N2O and NO production via inhibiting AOB-amoA gene abundance and AOB-dependent N2O yield. Our findings provided guidance for mitigating nitrogen oxide emissions in intensively managed vegetable production under the context of biochar amendments and climate warming.


Asunto(s)
Óxido Nítrico , Verduras , Nitrificación , Amoníaco , Microbiología del Suelo , Archaea , Óxido Nitroso/análisis , Suelo , Oxidación-Reducción
12.
Angew Chem Int Ed Engl ; 60(41): 22522-22528, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34374208

RESUMEN

Achieving highly selective acetylene semi-hydrogenation in an ethylene-rich gas stream is of great industrial importance. Herein, we construct isolated single Pd atom in a polyoxometalate-based metal-organic framework (POMOF). The unique internal environment allows this POMOF to separate acetylene from acetylene/ethylene gas mixtures and confine it close to the single Pd atom. After semi-hydrogenation, the resulting ethylene is preferentially discharged from the pores, achieving a selectivity of 92.6 %. First-principles simulations reveal that the adsorbed acetylene/ethylene molecules form hydrogen bond networks with oxygen atoms of SiW12 O40 4- and create dynamic confinement regions, which preferentially release the produced ethylene. Besides, at the Pd site, the over-hydrogenation of ethylene exhibits a higher reaction energy barrier than the semi-hydrogenation of acetylene. The combined advantages of POMOF and single Pd atom provides an effective approach for the regulation of semi-hydrogenation selectivity.

13.
Nat Commun ; 12(1): 3181, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34039986

RESUMEN

Atomically monodispersed heterogeneous catalysts with uniform active sites and high atom utilization efficiency are ideal heterogeneous catalytic materials. Designing such type of catalysts, however, remains a formidable challenge. Herein, using a wet-chemical method, we successfully achieved a mesoporous graphitic carbon nitride (mpg-C3N4) supported dual-atom Pt2 catalyst, which exhibited excellent catalytic performance for the highly selective hydrogenation of nitrobenzene to aniline. The conversion of ˃99% is significantly superior to the corresponding values of mpg-C3N4-supported single Pt atoms and ultra-small Pt nanoparticles (~2 nm). First-principles calculations revealed that the excellent and unique catalytic performance of the Pt2 species originates from the facile H2 dissociation induced by the diatomic characteristics of Pt and the easy desorption of the aniline product. The produced Pt2/mpg-C3N4 samples are versatile and can be applied in catalyzing other important reactions, such as the selective hydrogenation of benzaldehyde and the epoxidation of styrene.

14.
PLoS One ; 16(1): e0245694, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33465164

RESUMEN

Autophagy is a conserved cellular process playing a role in maintenance of cellular homeostasis and response to changing nutrient conditions via degradation and recirculation of cellular redundant components. Autophagy-related proteins (Atg) play important function in autophagy pathway. Aedes albopictus mosquito is an effective vector transmitting multiple viruses which cause serious human diseases. Moreover, Aedes albopictus mosquito is becoming a serious threat to human health due to its widening distribution in recent years and thus worth of more research attention. It was reported that autophagy might play a role in viral infection in Aedes mosquito. To better understand the interaction between autophagy and arbovirus infection in mosquito system, it is necessary to identify autophagy pathway in the system. However, autophagy in Aedes albopictus mosquito is still poorly understood so far. We recently identified AaAtg8, the first Atg protein reported in Aedes albopictus mosquito. This work further identified twelve atg genes in Aedes albopictus mosquito. Sequence and phylogenetic analysis of the twelve atg genes were performed. Expression profiles of all the twelve Aaatg genes in different developmental stages and genders of Aedes albopictus mosquito were conducted. Effects of chemicals inhibiting or inducing autophagy on the levels of eight identified AaAtg proteins were examined. The function of two identified AaAtg proteins AaAtg6 and AaAtg16 and their response to arbovirus SINV infection were studied preliminarily. Taken together, this work systematically identified Aedes albopictus atg genes and provided basic information which might help to elucidate the autophagy pathway and the role of autophagy in arbovirus infection in Aedes mosquito system.


Asunto(s)
Aedes/metabolismo , Infecciones por Arbovirus/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia/efectos de los fármacos , Autofagia/genética , Adenina/análogos & derivados , Adenina/farmacología , Aedes/genética , Aedes/crecimiento & desarrollo , Aedes/virología , Animales , Infecciones por Arbovirus/genética , Arbovirus/efectos de los fármacos , Proteínas Relacionadas con la Autofagia/genética , Beclina-1/genética , Beclina-1/metabolismo , Línea Celular , Cloroquina/farmacología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Masculino , Filogenia , ARN Interferente Pequeño , Reacción en Cadena en Tiempo Real de la Polimerasa
15.
Philos Trans R Soc Lond B Biol Sci ; 375(1810): 20190747, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-32892724

RESUMEN

In summer 2018, Europe experienced a record drought, but it remains unknown how the drought affected ecosystem carbon dynamics. Using observations from 34 eddy covariance sites in different biomes across Europe, we studied the sensitivity of gross primary productivity (GPP) to environmental drivers during the summer drought of 2018 versus the reference summer of 2016. We found a greater drought-induced decline of summer GPP in grasslands (-38%) than in forests (-10%), which coincided with reduced evapotranspiration and soil water content (SWC). As compared to the 'normal year' of 2016, GPP in different ecosystems exhibited more negative sensitivity to summer air temperature (Ta) but stronger positive sensitivity to SWC during summer drought in 2018, that is, a stronger reduction of GPP with soil moisture deficit. We found larger negative effects of Ta and vapour pressure deficit (VPD) but a lower positive effect of photosynthetic photon flux density on GPP in 2018 compared to 2016, which contributed to reduced summer GPP in 2018. Our results demonstrate that high temperature-induced increases in VPD and decreases in SWC aggravated drought impacts on GPP. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.


Asunto(s)
Atmósfera/análisis , Cambio Climático , Sequías , Bosques , Pradera , Fenómenos Fisiológicos de las Plantas , Europa (Continente) , Estaciones del Año
16.
ACS Appl Mater Interfaces ; 12(35): 39352-39361, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32805905

RESUMEN

While control over chemical reactions is largely achieved by altering the intrinsic properties of catalysts, novel strategies are constantly being proposed to improve the catalytic performance in an extrinsic way. Since the fundamental chemical behavior of molecules can remarkably change when their molecular scale is comparable to the size of the space where they are located, creating spatially confined environments around the active sites offers new means of regulating the catalytic processes. We demonstrate through first-principles calculations that acetylene hydrogenation can exhibit significantly improved selectivity within the confined sub-nanospace between two-dimensional (2D) monolayers and the Pd(111) substrate. Upon intercalation of molecules, the lifting and undulation of a 2D monolayer on Pd(111) influence the adsorption energies of intermediates to varying extents, which, in turn, changes the energy profiles of the hydrogenation reactions. Within the confined sub-nanospace, the formation of ethane is always unfavorable, demonstrating effective suppression of the unwanted overhydrogenation. Moreover, the catalytic properties can be further tuned by altering the coverage of the adsorbates as well as strains within the 2D monolayer. Our results also indicate that for improving the selectivity, the strategy of spatial confinement could not be combined with that of single-atom catalysis, since the reactant molecules cannot enter the sub-nanospace due to the too weak adsorbate-substrate interaction. This work sheds new light on designing novel catalysts with extraordinary performance for the selective hydrogenation of acetylene.

17.
Chem Commun (Camb) ; 55(92): 13900-13903, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31675016

RESUMEN

A Mn/Co dual nanoparticle-decorated hierarchical carbon structure was derived from a Zn/Mn/Co/chitosan composite hydrogel. This strategy critically relied on the formation of a supramolecularly crosslinked hydrogel that allowed the efficient and homogeneous incorporation of highly active Mn/Co species onto the surface of hierarchical carbon structures. The resultant electrocatalyst outperformed Pt/C toward the oxygen reduction reaction in 0.1 M KOH electrolytes.

18.
Exp Ther Med ; 18(3): 1745-1751, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31410133

RESUMEN

Ulcerative colitis is closely associated with colorectal cancer, the long-standing chronic inflammation being the key etiology of ulcerative colitis. The aim of the present study was to identify the anti-inflammatory and anti-apoptosis activity of taraxasterol in ulcerative colitis. MTT assay was used to obtain the optimal concentrations of lipopolysaccharide (LPS) and taraxasterol for cell treatments in vitro. A mouse model of colitis was established via dextran sodium sulphate (DSS) administration. Levels of IL-6 and TNF-α were detected through ELISA. Flow cytometry and western blotting were used to detect apoptosis and related protein expression levels, respectively. Hematoxylin and eosin staining was performed to detect the pathological damage. The results from the MTT assay identified the optimal concentration of LPS and taraxasterol, and ELISA results demonstrated that taraxasterol treatment decreased the expression levels of IL-6 and TNF-α in vitro and in vivo, in a dose-dependent manner. Taraxasterol treatment inhibited apoptosis, and reduced the protein levels of p53, Bcl-2 associated X (BAX) and caspase-3. Finally, pathological damages were reduced in colonic tissues of mice treated with taraxasterol. Taken together, taraxasterol treatment markedly inhibited inflammation and apoptosis in ulcerative colitis. Therefore, taraxasterol may be a promising agent for decreasing the inflammatory response in ulcerative colitis and other inflammation-related diseases.

19.
Sci Total Environ ; 651(Pt 2): 1830-1838, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30317171

RESUMEN

Transgenic Bacillus thuringiensis (Bt) crops have been widely planted, and the resulting environmental risks have attracted extensive attention. To foresee the impacts of Bt crops on soil quality, it is essential to understand how Bt crops alter the soil enzymatic activities and what the important influencing factors are. We compiled data from 41 published papers that studied soil enzymatic activities with Bt crops and their non-Bt counterparts. The results showed that dehydrogenase and urease significantly increased, but neutral phosphatase significantly decreased under Bt crop cultivations without Bt residues incorporation. The activities of dehydrogenase, ß-glucosidase, urease, nitrate reductase, alkaline phosphatase, and aryl sulfatase significantly increased under Bt crop cultivation with Bt residues incorporation. The response ratios of other enzymes were not significantly changed. Generally, the response ratios of soil enzymes were greater with Bt residues incorporation than those of Bt crop cultivations without Bt residues incorporation. Further, the response ratios of soil enzymes varied with Bt crop types and growth periods. It was the strongest under Bt cotton among Bt crops, and the significant responses usually appeared in the middle growth stages. The responses of soil enzymes ascribed more to the properties of Bt crops than to soil properties across sites. Given - significant responses of some soil enzymes to Bt crops, we recommended that soil environmental risks should be carefully evaluated over the transgenic crops.


Asunto(s)
Bacterias/enzimología , Productos Agrícolas/genética , Plantas Modificadas Genéticamente/genética , Microbiología del Suelo , Bacillus thuringiensis/genética , Productos Agrícolas/crecimiento & desarrollo , Plantas Modificadas Genéticamente/crecimiento & desarrollo
20.
Glob Chang Biol ; 25(3): 1078-1088, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30589163

RESUMEN

Soil net nitrogen mineralization rate (Nmin ), which is critical for soil nitrogen availability and plant growth, is thought to be primarily controlled by climate and soil physical and/or chemical properties. However, the role of microbes on regulating soil Nmin has not been evaluated on the global scale. By compiling 1565 observational data points of potential net Nmin from 198 published studies across terrestrial ecosystems, we found that Nmin significantly increased with soil microbial biomass, total nitrogen, and mean annual precipitation, but decreased with soil pH. The variation of Nmin was ascribed predominantly to soil microbial biomass on global and biome scales. Mean annual precipitation, soil pH, and total soil nitrogen significantly influenced Nmin through soil microbes. The structural equation models (SEM) showed that soil substrates were the main factors controlling Nmin when microbial biomass was excluded. Microbe became the primary driver when it was included in SEM analysis. SEM with soil microbial biomass improved the Nmin prediction by 19% in comparison with that devoid of soil microbial biomass. The changes in Nmin contributed the most to global soil NH4+ -N variations in contrast to climate and soil properties. This study reveals the complex interactions of climate, soil properties, and microbes on Nmin and highlights the importance of soil microbial biomass in determining Nmin and nitrogen availability across the globe. The findings necessitate accurate representation of microbes in Earth system models to better predict nitrogen cycle under global change.


Asunto(s)
Ciclo del Nitrógeno , Nitrógeno/química , Nitrógeno/metabolismo , Microbiología del Suelo , Suelo/química , Biomasa , Clima , Ecosistema , Concentración de Iones de Hidrógeno , Modelos Teóricos , Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...